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Abstract. We consider the torsional deformation of a non-homogeneous infinite elastic cylinder slackened by an 
external circular cut. The shear modulus of the material of the cylinder is assumed to vary with the radial coordinate 
by a power law. It is assumed that the lateral surface of the cylinder as well as the surface of the cut are free of 
stress. The main object of this study is to establish the effect of the non-homogeneity on the stress intensity factor 
at the tip of the cut. The problem leads to a pair of dual series relations, the solution of which is governed by a 
Fredholm integral equation of the second kind with a symmetric kernel. This equation is solved numerically by 
reducing it to an algebraic system. It is concluded that for any degree of non-homogeneity and for D, the relative 
depth of the cut, greater than 0.6, the cylinder may be replaced by a half-space. However, as the non-homogeneity 
increases, D decreases. 

1. Introduction 

The problem of torsion of  cylinders slackened by external cuts has important practical appli- 
cations in engineering. It has been treated - for a homogeneous medium - by several authors, 
among whom we cite Kudriavtsev and Parton [1], Suzuki et al. [2], Shibuya et al. [3], and 
Zlatin and Uflyand [4]. The mathematical method used in these papers involves the reduction 
of the basic equations and boundary conditions to dual series equations. Sneddon and Srivastav 
[10], Srivastav [11] and Sneddon [12] have given methods to reduce the problem of solving 
dual relations involving Fourier Bessel and Dini series expansions to a Fredholm integral 
equation. The last equation can be solved either by transformation to an infinite system of 
algebraic equations or numerically. 

The present work is an extension of the abovementioned problem to the case when the 
shear modulus of the material has an inhomogeneity described by a power-law dependence on 
the radial distance. Such a generalization finds its application in solid mechanics. This type of 
shear modulus can be possible in accreted bodies like a metallic shaft fabricated by sintering 
different materials or a multilayered metallic or polymeric cylinder. 

The paper has six sections: Section 1 is the introduction; Section 2 contains the problem 
formulation and basic field equations and boundary conditions; Section 3 is concerned with 
the reduction of the problem to dual series equations which, in turn, are reduced to a single 
Fredholm integral equation of the second kind. We make use o f  a method similar to that used 
in ref. [4] with some generalizations. In Section 4 we present expressions for some physical 
quantities of interest in terms of the auxiliary function that solves the integral equation. 
Section 5 is devoted to the solution of the Fredholm integral equation by transforming it to 
an infinite system of linear algebraic equations, which is solved numerically by iteration. In 
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Figure 1. Geometry of the problem. 

section 6, we present the numerical results and give conclusions concerning the influence of 
the inhomogeneity of the shear modulus on the stress intensity factor at the rim of the cut. 

2. Formulation of the Problem 

We consider a cylindrical rod of infinite length and unit radius slackened by an extemal 
circular cut. Introduce cylindrical coordinates (p, 0, z) with the axis of the crack as the z-axis. 
The crack is given by z = 0, e < p < 1. The lateral surface of the rod and the surface of the 
crack are assumed to be stress free. The rod is twisted by means of two equal and opposite 
torques (M, - M )  applied at infinity; see Figure 1. The shear modulus is taken in the form 

# = #~p~, (1) 

where a > 0; #a is a constant. 
For the torsional problems of bodies of revolution, the only non-vanishing component of 

the displacement vector is the 0 component v(p, z) which is independent of 0. In the case of 
non-homogeneous and isotropic bodies this component must satisfy the equation [5] 

o ~  + + ~ -  + p + ~ = o, (2) 

' = O M O p .  where ~f, 
For the considered case, Equation (2) takes the form 

02v 1 + a Ov 1 + a 02v 

Op~  + - -  - -  = 
p Op ~ v + ~  o. (3) 

The non-vanishing stress components are 

~'ep(p,z) = Pp~p  and TOz(p,z) = l~-~z. (4) 
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The symmetry of the problem with respect to the plane z = 0 makes it possible to search 
for a solution of (3) only in the semi-infinite cylinder 0 < p < 1 , - c o  < z <_ 0 with the 
boundary conditions 

~0,(1, z) = 0, ( - ~  < z < o), (5) 

v(p, O) = O, (0 <_ p < e), (6) 

~-o.(p,O) =0, (~<p<_ 1), (7) 

fo I z) dp = M/2~r, ( - e e  <_ z < 0). (8) p27-zO(p, 

The solution of Equation (3) satisfying conditions (5) and (8) is 

v(p,z) = (4 + ot)M pl-U ~ 2#,~r pz - Cop + ~ CkA-~lJ~(Akp)e ~kz, (9) 
k = l  

where u = 1 + c~/2, {Ak} are the positive zeros of the Bessel function Ju+l (A), and {Ck} are 
constants to be determined. 

The shear-stress component rzO (p, z) corresponding to the solution (9) is 

~'zO(P, z) = (4 + c~)Mp2._ 1 2~ + ~F'-z ~ CkJ~(~kp)e )'kz. (10) 
k = l  

Thus, the remaining boundary conditions (6), (7) lead to the following system of dual series 
equations 

oo  

-Cop+pl-V~-~CkA-~lJu()~kp)=O, ( O < p < e ) ,  (11) 
k = l  

o~ 

7p V + ~ CkJu(Akp) = O, (e < p < 1), (12) 
k = l  

where 

4 + a  (1 + u ) M  
7 = ~ M  = (13) 

27r#c, 7rp~ 

The shear stress acting on the plane z = 0 is 

r~o(p,O) = .~p~-~ ['rp" + ~ Ck&(),kp) 
k = l  

, (0 _< p < e). (14) 

3. The Solution of the Dual Series Equations 

To solve the pair of Equations (11) and (12), we make use of the method of Srivastav [11]. 
We extend Equation (12) to 

oo  

7P L" + ~_, GkJv()~kp) = T(p), (0 _< p < 1), c (15) 
£ = 1  
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where 

{0, __~ (e<p<l), 
T(p) -P~-~dpd ,~g( t )  dr, (0<_p<,) ,  (16) 

and the unknown auxiliary function g(t) is assumed to be continuously differentiable in the 
closed interval [0, e]. 

Then, on the basis of Equation (15) and the orthogonality of the system of functions 
{P", J,(,~kP)} in the interval [0, 1] with the weight function p, we get 

fo' 2x/-ffr(v + 2) fo' 7 = 2(1 + v) pV+lT(p) dp = r(v + 1/2) t2v-~9(t ) dt, (17) 

2 fol Ck = j2(,~k---- ~ pT(p)Jv(akp)dp, (k > 1). (18) 

Substitution from (18) into Equation (l l) we get the following integral equation for 
determining the auxiliary function g(t): 

h' -Cop  v + E(p, n)T(,7),7 d~ = 0, (0 _< p < e), (19) 

where 

E(p,r/) = 2 ~ Jv(Akq?)J~()~kp) 
k=l )~kJ2()~k) (20) 

The kernel (20) can be expressed in integral form through the use of contour integration 
of the function of a complex variable 

r_r0) 
F(z) = "'v+l Jv(pZ)Jv(rlz) + i 4(1 + v)pVrl v 

Ju+l(z) 7rz 2 ' 

where H O) (z) is the Hankel function of the first kind and order p. The second term 

• 4(1 + ~)pV,TV 
Z 

~-Z2 

is taken to remove the singularity of the function F(z) as z as z ~ 0. The integral is taken 
around the contour described in the paper of Sneddon and Srivastav [10]. One obtains the 
integral expression 

h E(p, rl) = Jv(PY)Jv(~IY) dy 

2 L °° [gv+l(y) p~rff] +-Tr _ [~+1-(~ Iv(py)Iv(rly) - 2)v + l) y2 j dy. (21) 

Substituting (16) and (21) into (19) and using the Weber - Schafheitlin integral [6, form. 
8.11(7)], and Sonine's first finite integral [13, form. 12.1 l(1)], we obtain a simple integral 
equation of Abel type: 

fo p = ¢(p), (0 p ~), 
t2v-l g( t) 

dt < < (22) 
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¢(P) 
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2 ~ oo [ 2P(v + 2) p2U t2v-I 
= Cop2V f ° g(t) fo Lff ¥ y2 

Kv+,U) dydt. (23) ir.+~(y) 
Inverting the Abel Integral Equation (22), we obtain the following Fredholm integral 

equation of the second kind: 

2F(v + 1) _ff sV-lg(s) = V~F(v + 1/2) C°sV + -v K(s,  t)tV-lg(t ) dr, (24) 

with the symmetric kernel 

4 / ~  [2P(v + l)F(v + 2) (ts) ~ 
K(s , t )  = 7~ t '[-ff("v'+ 1/2)12 Y 2 

Kv+l (Y) 1/2(8y)] dy. --Ytl/Zsl/2 2--~v+t-~ Iu-l/x(ty)Iu- (25) 

Define 

2r(v+ 1) Co¢(t) = tv-19(t). (26) 
V/-~F(v + 1/2) 

It is seen that ¢(t) satisfies the regular Fredholm integral equation of the second kind: 

¢(s) = s ~ + K(s,  t)¢(t)dt,  (0 < s < e). (27) 

4. S o m e  Phys ica l  Quanti f ies  of  Interest  

Now we express some quantities of physical importance in terms of the function g(t). The 
shear component "rsz inside the region z = 0, 0 < p _< e is found to be 

TOz (P, O) = --#ap 2u-2 d L c 9(t)dt (0 < p < e). (28) 
dp ~ '  - - 

The torque M can be evaluated from Equations (13) and (17): 

r(~ + I) £, 
m = 2/zc, qr 3/1 F(v + 1/2) -v t2u-19(t ) dt. (29) 

The most interesting quantity for applications is the stress intensity factor 

KHz = lim ~/2rc(e -- p)r0z (p, 0) (30) 

which can be expressed in terms of the auxiliary function 9(t) by using Equations (28) and 
(29). We obtain 

r(~+I/Z)M dv-mg(~) 
K t l t =  2~rF(v + 1) f~t2v-19(t ) dt" (31) 
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It is important to note that for small e the integral of Equation (24) has the approximate 
solution 

2r(v + 1) 
g(~) = v ~ r ( .  + 1/2) Cos. 

This limiting case corresponds to the Reissner-Sagoci problem for a non-homogeneous half- 
space with shear modulus # = #ap a, studied in refs. [7, 8]. If we denote the stress intensity 
factor for this case by K ~,  then 

KO o = r ( v  + 3/2)M e_5/2. 
7rr(v + 1) 

We introduce the following dimensionless stress intensity factor: 

Kil l  e2Vg(e) 
Kp = K--- ~ = (2v + 1) f~ t2v-lg(t) dt" (32) 

5. Solution of the Integral Equation 

Equation (24) or (27) with the kernel (25) can be solved numerically for general values of 
the parameters v and e. Following Kantorovich and Krylov [9], the numerical solution of 
the integral equation can be obtained by replacing it by a finite system of linear algebraic 
equations. Zlatin and Uflyand [4] solved the homogeneous medium case by this method. 
On the other hand, the Integral Equation (27) can be reduced to an infinite system of linear 
equations as in [1]. The kernel (25) can be expressed in the form of a series 

oo 

K(s, t)  = _-4 (st)rye.  bm(t)s2m ' 
7r 

r r t=O 

(33) 

where 

b,~(t) l / 5 {  m!r(v + m + 1/2) (y/2)v+2m+l/2 KV+llv+l(y) (y) tl/2-vlu-I/2(tY) 

2r'(v + 1)r(v + 2) / 
yZr(v + 1/2) ao~. dy 

1 X-'~ d2v(rn + k)t 2k 
m!r(v + m + 1/2) ~ k!r(v + k + 1/2)' 

(34) 

¢"(~) = I .÷,(v)  
2 -1 

r ( .  + 1)r(v + 2)/ dy, 50. 
] 

(n > o) (35) 

and 5ran is Kronecker's symbol. 
We shall seek the solution of the integral equation in the form 

c<) 

~(8) = 8 v E "[m82rn" 

m-----0 

(36) 



Torsion of a Cylinder 553 

Substituting (33) and (36) in (27) we may show that the coefficients {Tin} are determined 
from the solution of the infinite system of algebraic equations 

(3O 

~/m + E amr~/r = ~m0, (m  > 0), (37) 
r=0 

where 

4 fo e t2v+2%m(t) dt 
amr = 7r 

4 V"°° ffu(m q- n)e 2v+2n+2r+l 
(38) 

-~ ~ m!n!r(u + m + 1/2)r(u + n + 1/2)(2u + 2n + 2r + 1)" 

The system (37) is quasi-regular. In order to prove this, we shall first prove that 

lim bin(t) = 0, (0 < t < 1). (39) 
m--.4  o o  

Substituting the asymptotic expansions for the modified Bessel functions in (34), we get the 
following leading term for large values of m: 

v/-fft-~r(u + 2m + 1) 
bin(t) ~ m!r(  + m + 1 / 2 ) { 2 ( 2  - t ) F + 2 m +  , '  

This leads to (39). 
Estimating the coefficients of the system (37) from (38), we get 

~2u+2r+ 1 

Ibm(g)l 2u + 2r + 1' (0 <__ e' < e < 1). lam~l _< 4 
71" 

Consequently 
OO 

Sm = ~ 
r-=-O 

c~ ~2v+2r+ 1 
lam~l < _4 Ibm(e')l 

- 7r 2 u + 2 r +  f r=0 
2 

< - Ibm(, ' ) [  I ln(1 - e2)l. (40) 
7[ 

From the relations (39) and (40) it follows that the following inequality holds when m starts 
from a certain number m = N: 

S i n < l ,  m >  N. 

Therefore, the system (37) is quasi-regular for 0 < e < I. The constant N depends on e, 
it is larger, the closer e is to unity. Thus we can solve the system (37) by truncation. 

6. Numerical Results and Discussions 

In the numerical examples the main question is the convergence behavior of the coefficients "/m 
and of the series giving the stress intensity factor Kp. Since the infinite system of simultaneous 
equations is to be truncated at a finite number, N,  of terms, let Equation (37) be approximated 
by 

N - I  

%n + E amr~r = ~mO, (m = O, 1 . . . .  , N - 1). (41) 
r=0 
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Figure 2 The values of Kp for a = 0, 1 . . . . .  7. 

On the basis of  (26), (32) and (36), we have the following formula for calculating the nondi- 
mensional stress-intensity factor: 

K v =  7he 2n ( 2 v +  1) ~ 2 v + 2 n +  1 " 
rz=O 

(42) 

The integrals (35) where evaluated numerically for the values a = 0, 1 , . . . ,  7 and n = 
0, 1 , . . . ,  38. The system (41) is solved. The stress intensity factor I f  v is calculated by the 
formula (42). The number N is chosen to obtain a certain accuracy. The results are shown 
graphically in Figure 2, from which we conclude that: 

(i) The stress intensity factor is almost the same as in the Reissner-Sagoci problem for all 
values of  a ,  provided that E < 0.4. 

(ii) For E > 0.4, the stress intensity factor approaches l f ~  as a increases. 
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